

Human skin metabolism Past present and future

Faith M Williams

Newcastle University

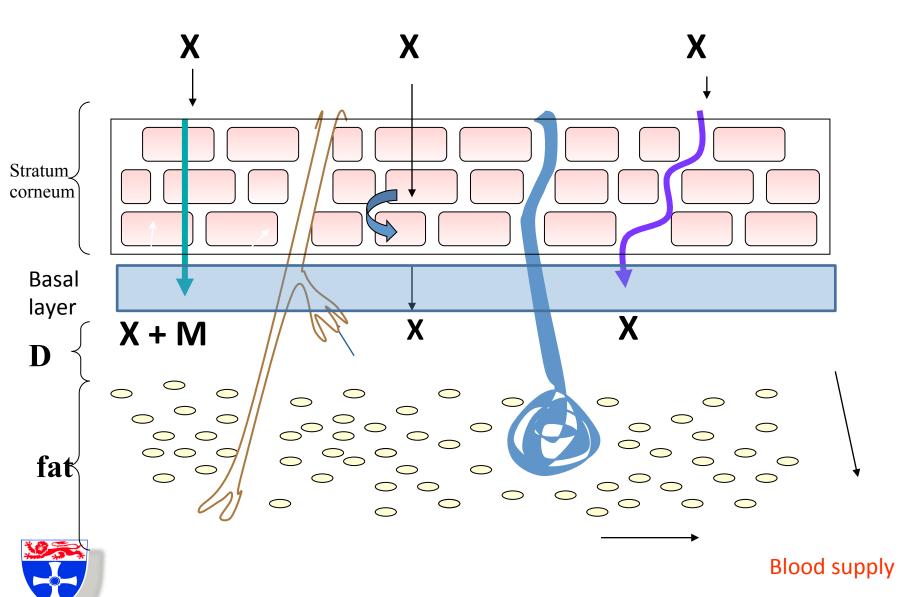
Medical Toxicology Centre Institute of Cellular Medicine

London

Edinburgh4

Newcastle

Metabolism of xenobiotics


Transferases Pharmacological Cytochromes P450, (glutathione, glucuronyl, effect **Esterases ADH/ALDH,** sulpho, N-acetyl) others Phase 2 Phase 1 elimination Drug/ metabolite chemical detoxification activation Pharmacological

Toxicity

effect

Absorption and metabolism through the skin

Metabolism in the skin

- in vivo difficult to distinguish from liver metabolism.
- Conversion may be low (CYP p450).
- P450 activity important for local toxicity eg DNA adducts formation of diol epoxides- toxicity local binding, sensitisation, irritation
- or may affect the bioavailability of the parent absorbed material-First pass deactivation eg conjugation, hydrolysis,
- local metabolism therapeutics eg local release of steroids from ester prodrugs

Defining enzymes present in skin-

- Functional measures specific substrates-
- Protein expression- western, IHC
- mRNA Gene array
- subcellular fractions single pathway -loose cellular localisation and may dilute activity- Actually higher levels in cells
- Localisation to basal cells and hair follicles plus high levels in sebaceous and sweat glands.
- Fresh viable skin in short term culture/ static cells
- Studies in keratinocytes fresh, in culture and cell lines
- Skin equivalents- in house or commercial

early understanding of dermal

metabolism

 cytochromes p450 low in skin- CO binding protein
 Cyp p450/p448--- p420

- profile differs from liver
- Only v low activity enough= toxic metabolite

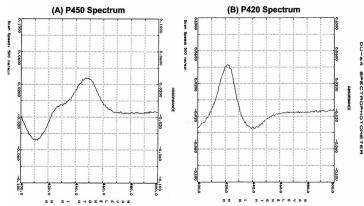


Table 1. Mouse skin and liver microsomal mixed-function oxidase activities.

Substrate	Specific activity (pmol/mg per min)		
	Liver	Skin	- Ratio of skin/liver × 100
Benzo[x]pyrene	209±28	8-2±0-5	3.9
Diphenyloxazole †	279±6-0	5.7 + 0.6	2.0
Ethoxyresorufin	267±13	40±3.6	15
Aldrin	402 ± 33	4.0 ± 0.4	1.0
Coumarin	$27 \cdot 3 \pm 3 \cdot 0$	0.13 ± 0.03	0.5
Methoxycoumarin	479±50	3-9±0-2	0.8
Ethoxycoumarin	932 ± 88	7·2±0·7	0.8
Propoxycoumarin	628 ± 82	3.4 ± 0.4	0.5
Butoxycoumarin	267 ± 32	2·5 ± 0·3	0.9
Cytochrome P-450 ‡	960 ± 20	n.d.	_

Values are the means ± S.E.M. of four separate experiments. Each experiment utilized microsomes pooled from 6-10 animals. Measurements of enzyme activity were performed as described in *Materials* and methods.

n.d., not detected

†Fluorescence units/mg per min.

Ipmol/mg.

CYP activity in human skin

- Our data CYP activity detectable but low, interindividual variation need absolutely fresh tissue. Activity lost on freezing.
- Need sensitive assay for product
- Aldrin gc/ecd

Fluorescent substrates Benzopyrene

-Testosterone- LC-MS

Recent groups Skin or LSE models low, variable undetectable but inducible

Immuno assay, m RNA fresh skin still essential

Not all oxidative activity CO inhibited- myeloperoxidase

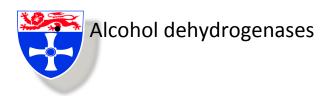
Table 2. Mouse skin co-factor requirements for mixedfunction oxidase activity.

	Enzyme activities	
	Aldrin epoxidase	Ethoxyresorufin O-dealkylase
Complete system	100	100
Complete system less NADH	81 ± 2	100 ± 1
Complete system less NADH and NADPH	4±1	0
Complete system plus CO (3:1;air:CO)	14±1	12±1
Complete system plus N ₂	11±4	4±2
Complete system plus DMSO (4%)	90±5	101 ± 4
Complete system plus metyrapone (1 mm)	56±4	40±6
Complete system plus a-naphthoffavone (0-5 mm)	94±3	0

Assays were carried out as described in Materials and methods and values are the means ± S.E.M. of three separate experiments. Each experiment utilized microsomes pooled from 6-10 animals. Enzyme activities are expressed as a percentage of activity in the complete incubation system which contained 0-8 mm NADPH and NADH and up to 1 mg/ml microsomal protein in 0-1 mm KCl-phosphate buffer, pH 7-5.

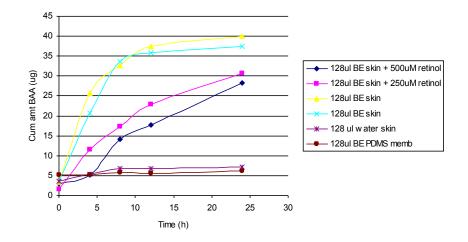
> Rettie AE, Williams FM, Rawlins MD (1986) Xenobiotica, 16: 205-211

Phase 1 enzymes in skin substrates

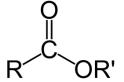

Cytochrome p450

- FMO 1 and 3
- myeloperoxidases

- carboxylesterases
- Cholinesterases


- 1A1 Benzopyrene
- 1A1 2B Resorufin analogues
- 2B Aldrin
- 1A1 +Ethoxy coumarin
- 2 C9 +7 methoxy trifluoromethyl coumarin (MFC)
- 3A + Testosterone
- 7 benzyloxyquinoline
- naphthalene

- Paraben esters
- Fluazifop butyl
- Umbelliferyl esters
- Carbaryl
- Organophosphates
- Alcohols
- Glycol ethers



alcohol dehydrogenases

- Alcohol dehydrogenasesactivity in intact skin and subcellular fractions
- Activity greater than CYPs
- Protein expression
 (ADH1, 2 and 3; ALDH 1
 ADH profile detected in skin by Western blotting differs from liver
- Histochemical localisation to epidermis and appendages. Little ADH2 detected.

Carboxylesterases in skin

- Carboxylesterases hydrolyse esters in the skin.
- mainly hCE1 (liver) and hCE2 in extrahepatic tissue
- Skin like small intestine.
- Microsomal and cytosolic
 - substrate specificity
 - Differing inhibitor sensitivity

Marker esters

P nitro phenyl acetate

Phenyl valerate

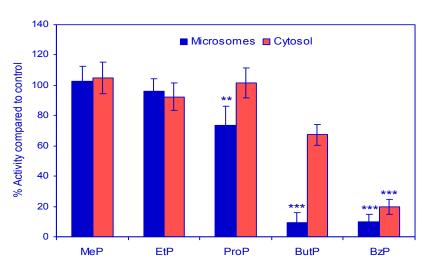
Phenyl acetate

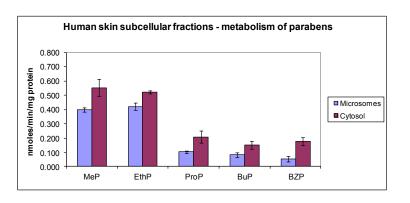
Methylumbelliferyl

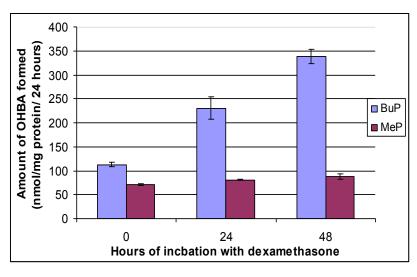
Acetate

Carbaryl

Fluazifop butyl


Procaine


Paraben esters



Carboxylesterases in skin

- Methyl paraben to butyl / benzyl paraben
- Can be upregulated by environment (chemicals UV) steroids
- Inhibition of hydrolysis of parabens by loperamide (hCE2 inhibitor)

Jewell et al, Williams et al 2013

Phase II metabolism in skin

Generally higher compared to CYP than liver Extrahepatic tissue profile balance of pathways- detoxication

 Glutathione S transferases

- DNCB GSTP
- Cofactor limiting

- N acetyl transferases
 NAT-1 and NAT-2
- Pamino benzoic acid
 NAT1
- paraphenylenediamine

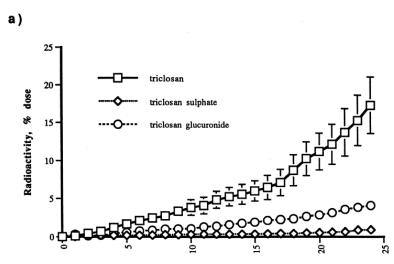
Phase II metabolism in skin

Sulphotransferases

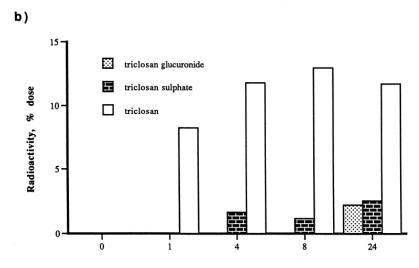
- SULT1A1-E
- SULT 2B1 steroidscholesterol

Glucuronyltransferases

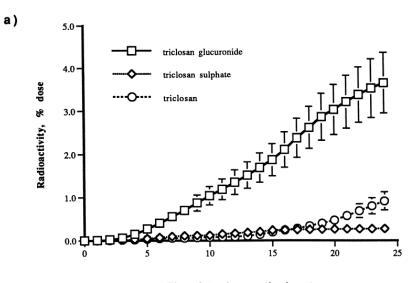
UGT1

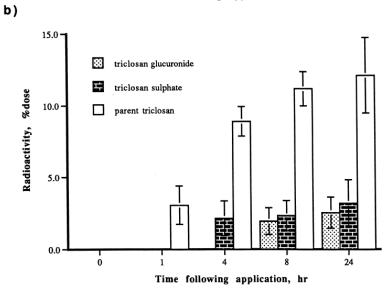


- Phenols P nitrophenol
- Dopamine
- Triclosan
- Minoxidil
- Bilirubin
- SULT2B1b cholesterol
- Dopamine
- 5HT
- 4 Methylumbelliferone UGT1
- Pnitro phenol
- Bilirubin
- deoxycholic acid

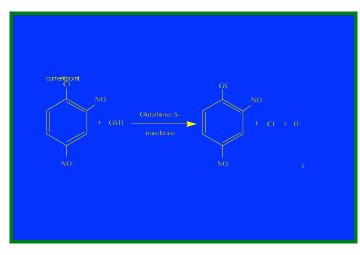

RAT

Triclosan

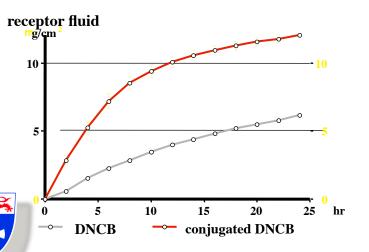

HUMAN


Time after application, hr

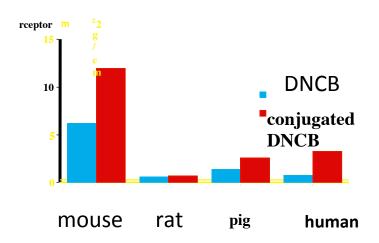
Time following application, hr



Time following application, hr



Glutathione transferases


Metabolism of DNCB applied to skin in flow through cell

Mainly GSTP (DNCB substrate)
CDNB less specific
Glutathione may be limiting
- sensitisation

Absorption of DNCB through skin in the flow

through cell in 24 hr

Jewell et al

Current approaches

- Emphasis on evaluation of models-
- Define activity, protein expression and RNA profiles
- Cosmetics Europe paper good summary
- Points:
- Issues with frozen skin,
- Marker substrates
 - Induction and knock down

Concerns

- Absorption versus metabolism in "Short term culture" – conditions do not reflect those in vivo particularly regarding time;
- Need not only define marker substrates but chemicals of concern local and systemic toxicity
- Relate to other routes small intestine and liver

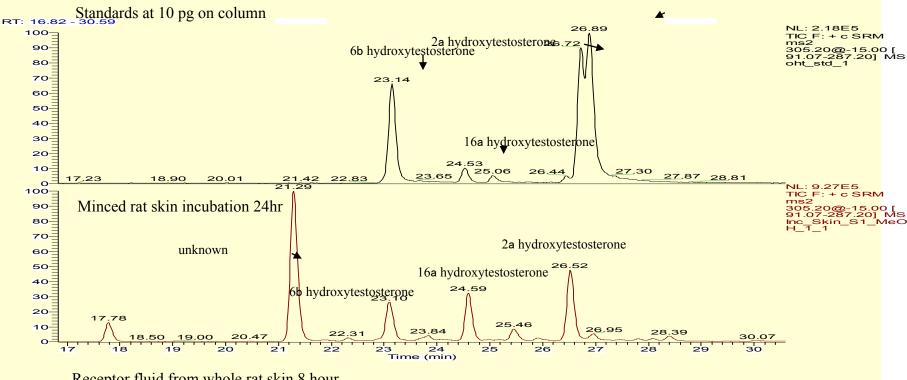
Future:

- Important to relate to in vivo studies generate data for PBPK modelling
- Absorption -Rate of diffusion through skin versus access to metabolising enzymes
- Vmax of enzyme- potential for saturation at high topical application
- Uptake and efflux from cells- transporters?
- Limitation of cofactor availability eg glutathione
- Oral dermal extrapolation- influence of metabolism differences

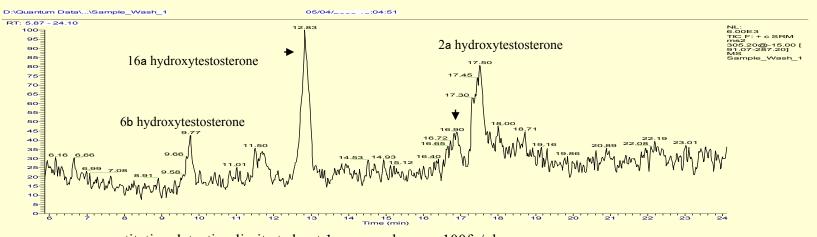
Acknowledgements

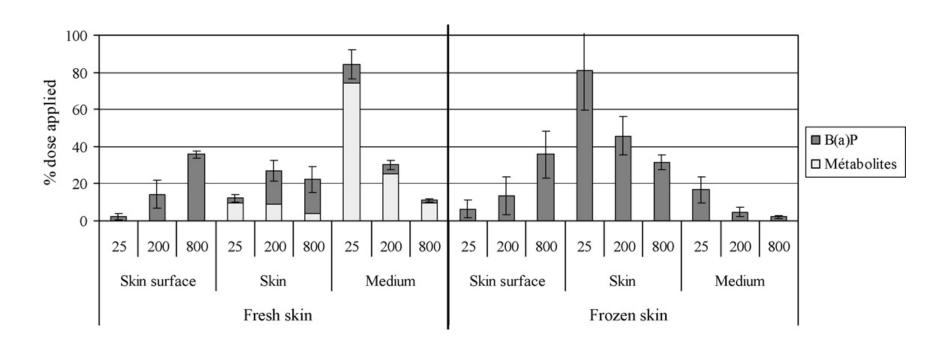
- Everyone!
- Simon Wilkinson
- My research groups
- Collaborators
- Funding

Hydrolytic activity in rat skin cf lung and liver microsomes/cytosol


Vmax	Liver	Lung	Skin
Fluazifop Butyl	m 6.2	m 0.4	m 0.02
(mmol/min/g)	c 6.8	c 1.5	c 0.4
Carbaryl	m 2.1	m 1.6	m 0.2
(nmol/min/g)	c 6.7	c 1.4	c 0.5
Paraoxon	m 330	m 2.0	m nd
(nmol/min/g)	c nd	c nd	c nd

Phenylacetate activity detected in all tissues Hydrolysis of FB was inhibited by paraoxon and bisnitrophenol phosphate


McCracken et al (1993) Biochem Pharmacol 45: 31-36


Results Testosterone metabolism during dermal absorption

Receptor fluid from whole rat skin 8 hour

Lack of stability of CYPs Benzo[a]pyrene in pig skin

Parent and metabolites after 72 h in organotypic culture Jacques et al. (2010) Toxicology Letters 199 22–33

Previously fresh Human skin blisters – benzoapyrene metabolism (Chapman et al)